Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We present a quantum M2 brane computation of the instanton prefactor in the leading non-perturbative contribution to the ABJM 3-sphere free energy at largeNand fixed levelk. Using supersymmetric localization, such instanton contribution was found earlier to take the form$$ {F}^{inst}\left(N,k\right)=-{\left({\sin}^2\frac{2\pi }{k}\right)}^{-1}\exp \left(-2\pi \sqrt{\frac{2N}{k}}\right)+.\dots $$ The exponent comes from the action of an M2 brane instanton wrapped onS3/ℤk, which represents the M-theory uplift of the ℂP1instanton in type IIA string theory on AdS4× ℂP3. The IIA string computation of the leading largekterm in the instanton prefactor was recently performed in arXiv:2304.12340. Here we find that the exact value of the prefactor$$ {\left({\sin}^2\frac{2\pi }{k}\right)}^{-1} $$ is reproduced by the 1-loop term in the M2 brane partition function expanded near theS3/ℤkinstanton configuration. As in the Wilson loop example in arXiv:2303.15207, the quantum M2 brane computation is well defined and produces a finite result in exact agreement with localization.more » « less
-
Abstract The generalized Wilson loop operator interpolating between the supersymmetric and the ordinary Wilson loop in SYM theory provides an interesting example of renormalization group flow on a line defect: the scalar coupling parameterζhas a non-trivial beta function and may be viewed as a running coupling constant in a 1D defect QFT. In this paper we continue the study of this operator, generalizing previous results for the beta function and Wilson loop expectation value to the case of an arbitrary representation of the gauge group and beyond the planar limit. Focusing on the scalar ladder limit where the generalized Wilson loop reduces to a purely scalar line operator in a free adjoint theory, and specializing to the case of the rankksymmetric representation ofSU(N), we also consider a certain ‘semiclassical’ limit wherekis taken to infinity with the productkζ2fixed. This limit can be conveniently studied using a 1D defect QFT representation in terms ofNcommuting bosons. Using this representation, we compute the beta function and the circular loop expectation value in the largeklimit, and use it to derive constraints on the structure of the beta function for general representation. We discuss the corresponding 1D RG flow and comment on the consistency of the results with the 1D defect version of the F-theorem.more » « less
-
A bstract Extending earlier work, we find the two-loop term in the beta-function for the scalar coupling ζ in a generalized Wilson loop operator of the $$ \mathcal{N} $$ N = 4 SYM theory, working in the planar weak-coupling expansion. The beta-function for ζ has fixed points at ζ = ±1 and ζ = 0, corresponding respectively to the supersymmetric Wilson-Maldacena loop and to the standard Wilson loop without scalar coupling. As a consequence of our result for the beta-function, we obtain a prediction for the two-loop term in the anomalous dimension of the scalar field inserted on the standard Wilson loop. We also find a subset of higher-loop contributions (with highest powers of ζ at each order in ‘t Hooft coupling λ ) coming from the scalar ladder graphs determining the corresponding terms in the five-loop beta-function. We discuss the related structure of the circular Wilson loop expectation value commenting, in particular, on consistency with a 1d defect version of the F-theorem. We also compute (to two loops in the planar ladder model approximation) the two-point correlators of scalars inserted on the Wilson line.more » « less
An official website of the United States government
